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The Hitch Hiker’s Guide to the Galaxy is an indispensable
companion to all those who are keen to make sense of life in an
infinitely complex and confusing Universe, for though it cannot
hope to be useful or informative on all matters, it does at least
make the reassuring claim, that where it is inaccurate it is at
least definitely inaccurate. In cases of major discrepancy it’s
always reality that’s got it wrong.

Douglas Adams, The Restaurant at the End of the Universe
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Chapter 1

Introduction

MMTk is a toolkit for writing high-performance memory managers. It cur-
rently provides the memory management subsystems of the JikesRVM Java
virtual machine and the JNode operating system, and has been ported to
the Rotor C# environment.

This manual is intended to be a comprehensive reference to MMTk for
programmers who want to do memory management research, or who want
to use MMTk as the memory manager for a language runtime or virtual
machine. This is not a tutorial on memory management, and if you are new
to garbage collection Jones and Lins’ excellent book 1 could be considered
required background reading. Neither is this manual intended to be a sub-
stitute for reading the code, rather, it attempts to bridge the gap between
the two.

1.1 Design considerations

MMTk is carefully designed for high performance. Some of the techniques
used are obvious in the design, and some are more subtle.

The design principles that MMTk uses are

1. Make the frequent case fast.

And conversely, don’t worry too much about the performance of infre-
quently used code. This principle underlies all of the other techniques
in this list. Code that is not used frequently should be designed with
elegance and maintainability as its first goal.

2. Provide fast thread-local access to shared structures.

All of the data structures that MMTk uses frequently minimise locking
overhead using this design principle. This is evident in the structure
of allocators, queues, plans etc.

1‘Garbage Collection: Algorithms for Automatic Dynamic Memory Management’,
Richard Jones and Rafael Lins, John Wiley and Sons, 1996
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6 CHAPTER 1. INTRODUCTION

3. Avoid virtual dispatch on the fast path

When a method of an object whose type is not known exactly is called,
Java calls the method indirectly by indexing into the classes virtual
method table, which is not fast. One alternative is to use static meth-
ods, but this comes at the cost of some design flexibility, so it is pre-
ferrable to use instance methods, but code carefully so that the com-
piler maintains precise type information at the critical call sites. This
is discussed in more detail later.

4. Careful use of directed inlining

The InlinePragma and NoInlinePragma idiom allows Java VMs that
support it to perform directed inlining. While inlining can improve
performance dramatically, especially in the presence of exact type in-
formation, too much inlining can reduce performance.

5. Rely on compile-time constant folding

Particularly when combined with inlining, this is a powerful technique
for generating fast compact code while maintaining a strict separation
of concerns in a multilayered software design.



Chapter 2

A Simple MMTk Tutorial

The goal of this chapter is to provide a basic introduction to MMTk. It is
a walk-through of the process of building an incrementally more advanced
collector. The intention is that by getting some practical experience building
a simple collector, the remainder of the guide will make more sense.

It is estimated that blindly following the steps of the tutorial should take
around half a day. The amount of time to really understand MMTk is highly
variable, depending both on knowledge of memory management techniques
and programming experience.

2.1 Preliminaries

Getting MMTk and Jikes RVM and Eclipse working.

• Download Jikes RVM version 2.3.7 or later (see the Jikes RVM home
page and userguide).

• Make sure you can build and run a BaseBaseNoGC configuration (see
the Jikes RVM userguide).

• Open MMTk in Eclipse (see Eclipse documentation for further infor-
mation)

1. Start Eclipse. If prompted provide a workspace directory some-
where in your home directory (not RVM ROOT or its descen-
dants).

2. Select File → Import...
3. Choose ‘Existing Project into Workspace’
4. Browse to the directory where your MMTk tree sits ($RVM ROOT/MMTk)

and select OK.
5. Select Finish.
6. Switch to the Java perspective.

7



8 CHAPTER 2. A SIMPLE MMTK TUTORIAL

2.2 Adding the Tutorial collector

The goal is to create a tutorial collector. In order to achieve this, we will
use the NoGC collector in MMTk as a template.

2.2.1 Add a new Jikes RVM configuration.

At the time of writing, the non-MMTk parts of JikesRVM can’t be edited
in Eclipse1, so the following steps need to be done at the command line.

For the Tutorial GC, we use the NoGC configuration as a template.

1. Copy the GC configuration file
# cd $RVM ROOT/config/build/gc
# cp NoGC Tutorial

2. Edit Tutorial, changing the line:
export RVM WITH JMTK PLAN="org.mmtk.plan.nogc.NoGC"
to
export RVM WITH JMTK PLAN="org.mmtk.plan.tutorial.Tutorial"

3. Copy the build configuration file.
# cd $RVM ROOT/config/build
# cp BaseBaseNoGC BaseBaseTutorial

4. Edit BaseBaseTutorial, changing the line:
. $1/gc/NoGC
to
. $1/gc/Tutorial

2.2.2 Create the Tutorial package

Clone the NoGC plan using Eclipse.

1. Copy the org.mmtk.plan.nogc package, renaming it to org.mmtk.plan.tutorial.
(Highlight the org.mmtk.plan.nogc package, and select Edit→Copy fol-
lowed by Edit→Paste.)

2. Rename each of the classes within the new tutorial package, replacing
the substring ‘NoGC’ with ‘Tutorial’. (Use Eclipse’s rename refactor-
ing (Refector→Rename...) with its default options (update references)
to do this automatically, one class at a time). If you look inside any of
the renamed classes you should find that they are properly renamed,
with new class names, constructors etc. replacing ‘NoGC’ with ‘Tuto-
rial’ throughout.

1To be more precise, it can be edited in eclipse, but not as a Java project
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Make sure you can build and run the new BaseBaseTutorial configura-
tion. It should behave exactly the same as the BaseBaseNoGC configuration
(it should fail with an out of memory error as soon as it has exhausted the
maximum heap size specified on the command line with -Xms). To run the
SPECjvm98 jess benchmark, for example:

1. # cd to a directory containing SPECjvm98

2. # rvm -Xmx25M -Xms25M -X:gc:verbose=3 -X:gc:ignoreSystemGC=true
SpecApplication 202 jess

The above will set the minimum (-Xms25M) and maximum (-Xmx25M) heap
size to 25MB in which to run the benchmark, and will produce verbose
(-X:gc:verbose=3) GC messages. In order to run for longer, we tell MMTk
to ignore calls to System.gc() (-X:gc:ignoreSystemGC=true). The rest of
the command line arguments are specific to SPECjvm98. For a full list of
command line arguments run # rvm -X:gc, and for default values, run #
rvm -X:gc:printOptions.

2.3 Mark-Sweep

Change the Tutorial plan to use a MarkSweep garbage collector. It currently
uses a bump pointer allocator and does not perform collection.

2.3.1 Change allocation policy

Use a free list allocator instead of a bump-pointer. A MarkSweepSpace
is a region of virtual memory that uses a segregated free list to allocate
memory. A MarkSweepLocal is a thread-local object that provides fast
unsynchronized allocation from a MarkSweepSpace.

1. In TutorialConstraints, update GC header requirements:

• gcHeaderBits() should return MarkSweepSpace.LOCAL_GC_BITS_REQUIRED

• gcHeaderWords() should return MarkSweepSpace.GC_HEADER_WORDS_REQUIRED

• Add the appropriate import statement.

2. In Tutorial, replace the ImmortalSpace with a MarkSweepSpace:

• change the appropriate import statement

• change the type of defSpace and change the constructor appro-
priately.

• rename defSpace to msSpace (right-click, Refactor→Rename...)

• rename DEF to MARK_SWEEP (right-click, Refactor→Rename...)

• at this point TutorialLocal will be broken (for a moment...)
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3. In TutorialLocal, replace the ImmortalLocal (a bump pointer) with a
MarkSweepLocal (a free-list allocator):

• change the appropriate import statement
• change the type of def and change the constructor appropriately.
• rename def to ms (right-click, Refactor→Rename. . . )
• add an extra argument to alloc(): ms.alloc(bytes, align, offset, false);

because the free list allocator needs to know whether the alloca-
tion is occuring during GC (since alloc is never called during GC,
we just pass the value false).

4. Fix postAlloc() to initialize the mark-sweep header:

• add the following clause:

if (allocator == Tutorial.ALLOC_DEFAULT)
Tutorial.msSpace.initializeHeader(ref);}

With these changes, Tutorial should now work, just as it did before, only
exercising a free list (mark-sweep) allocator rather than a bump pointer
(immortal) allocator. Create a BaseBaseTutorial build, and test your system
to ensure it performs just as it did before. You may notice that its memory
is exhausted slightly earlier because the free list allocator is slightly less
efficient in space utilization than the bump pointer allocator.

2.3.2 Mark-sweep collection

The next change required is to perform mark-and-sweep collection whenever
the heap is exhausted. The poll() method of a plan is called at appropriate
intervals by other MMTk components to ask the plan whether a collection
is required.

1. In Tutorial.poll(), first insert a guard to ensure collections are not
triggered at the wrong times:

if (getCollectionsInitiated () > 0 || !isInitialized () ||
space == metaDataSpace)

return false;

2. Then in Tutorial.poll(), trigger a collection when the heap is ex-
hausted:

• Remove the Assert statement.
• Add the following:

if (getPagesReserved () > getTotalPages ()) {
Collection.triggerCollection(Collection.RESOURCE_GC_TRIGGER );
return true;

}
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• Add the appropriate import statement.

3. Next, the plan needs to know how to perform a garbage collection.
Collections are performed in phases, coordinated by data structures
defined in StopTheWorld, and have global and thread-local components.

In Tutorial, add global collection phases:

• Make Tutorial extend StopTheWorld rather than Plan.

• Remove the Assert call in Tutorial.collectionPhase()

• Using the commented template in Tutorial.collectionPhase(),
set the following within the clause for phaseId == PREPARE

super.collectionPhase(phaseId );
trace.prepare ();
msSpace.prepare ();
return;

This code prepares the mark-sweep space for collection (flipping
the mark state, among other things.

• Within the clause for phaseId == RELEASE

trace.release ();
msSpace.release ();
super.collectionPhase(phaseId );
return;

This releases the spaces from collection mode, and prepares to
allow the mutator to run again.

• Ensure that the default fall through (to StopTheWorld is uncom-
mented.

4. In TutorialLocal, add local collection phases:

• Make TutorialLocal extend StopTheWorldLocal rather than PlanLocal.

• Remove the collect() method in TutorialLocal

• Remove the Assert call in TutorialLocal.collectionPhase().

• Using the commented template in TutorialLocal.collectionPhase()

(being careful to replace NoGC with Tutorial), set the following
within the clause for phaseId == Tutorial.PREPARE

super.collectionPhase(phaseId , participating , primary );
trace.prepare ();
ms.prepare ();
return;

• Within the clause for phaseId == Tutorial.START_CLOSURE
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trace.startTrace ()
return;

This calls the method that traces the heap from the root set.

• Within the clause for phaseId == Tutorial.COMPLETE_CLOSURE

trace.completeTrace ()
return;

This completes a trace, picking up any objects that may have
come alive by having finalizers, for example.

• Within the clause for phaseId == Tutorial.RELEASE

trace.release ();
ms.release ();
super.collectionPhase(phaseId , participating , primary );
return;

• Ensure that the default fall through (to StopTheWorldLocal is
uncommented.

With these changes, Tutorial should now work correctly as a mark-sweep
collector, allocating with a free list allocator and collecting the heap each
time it is exhausted. Create a BaseBaseTutorial build, and test your system
to ensure it performs correctly. You should find that it correctly performs
collections (this will only be visible if you have set the -X:gc:verbose flag
appropriately).

2.4 Hybrid Copying/Mark-Sweep

Extend the Tutorial plan to create a ”copy-MS” collector, which allocates
into a copying nursery and at collection time, copies nursery survivors into
a mark-sweep space. This plan does not require a write barrier (it is not
strictly generational, as it will collect the whole heap each time the heap
is full). Later we will extended it with a write barrier, allowing the nurs-
ery to be collected in isolation. Such a collector would be a generational
mark-sweep collector, similar to GenMS. Explanation of nursery, nursery
survivors.

2.4.1 Add a copying nursery

• In TutorialConstraints, override the movesObjects() method to re-
turn true, reflecting that we are now building a copying collector:

public boolean movesObjects () {
return true;

}
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• In Tutorial, add a nursery space

1. Create a new space, nurserySpace, of type CopySpace, and make
it and msSpace each share 0.3 of the available heap (change from
0.6). The new copy space will initially be ’from-space’, so pro-
vide false as the final (additional) argument to the CopySpace

constructor. In the constructor argument change the string value
to something like "nursery".

2. add the appropriate import statement

3. Add a new space descriptor, NURSERY initialized with nurserySpace.getDescriptor()

4. Add nurserySpace to the prepare and release phases of collectionPhase(),
passing the flag true to the prepare phase, indicating that the
nursery is treated as ’from-space’ during the collection.

5. Fix accounting to account for this new space:

(a) Add nurserySpace to the equation in getPagesUsed(),
(b) Add a method to override getCopyReserve() which returns

nurserySpace.reservedPages(),
(c) add a method to override getPagesAvail(), returning (getTotalPages() - getPagesUsed())>>1,

which allows for a copy reserve on the assumption that future
allocation will go to the nursery and in the worst case will
need to be copied.

6. In TutorialLocal, add a nursery allocator. Add an instance of
CopyLocal calling it nursery. The constructor argument would be
Tutorial.nurserySpace.

7. Change alloc() to allocate into nursery... return nursery.alloc(bytes, align, offset);

• Remove mark-sweep initialization in postAlloc(), since no special post
allocation initialization is required now.

• Override allocCopy() with a new method which allocates into ms when
the allocator is ALLOC_DEFAULT, passing Tutorial.msSpace.inMSCollection()

as the final argument to ms.alloc(). Calls to allocCopy() with other
allocator values should fall through to super.allocCopy(). Override
postCopy() with a new method which does the following (the following
is currently necessary, but can be considered to be a design bug, which
we hope to fix soon):

Tutorial.msSpace.writeMarkBit(ref);
MarkSweepLocal.liveObject(ref);

• Add nursery.reset() to the release phase of collectionPhase(). In
TutorialLocal.getSpaceFromAllocator() add the statment

if (a == nursery) return Tutorial.nurserySpace;
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• In TutorialLocal.getAllocatorFromSpace() add the statement

if(space == Tutorial.nurserySpace) return nursery;

• In TutorialTraceLocal, add tracing mechanisms to accommodate the
new nursery.

1. Add a clause to isLive() which calls Tutorial.nurserySpace.isLive(object)
if the object is in the nursery space.

2. Add a clause to traceObject(), which calls Tutorial.nurserySpace.traceObject(this, object)

if the object is in the nursery space.

3. Create a method that overrides precopyObject(), which returns
null for null objects, calls Tutorial.nurserySpace.traceObject(this, object)

if the object is in the nursery space, and returns the object oth-
erwise.

4. Create a method that overrides willNotMove(), which returns
Space.isInSpace(Tutorial.NURSERY, object);!

5. Create a method which overrides getAllocator() which returns
Tutorial.ALLOC_DEFAULT.

With these changes, Tutorial should now work correctly as a copy-MS col-
lector, allocating with a bump pointer, promoting into a mark-sweep space,
and collecting the heap each time it is exhausted. Create a BaseBaseTutorial
build, and test your system to ensure it performs correctly. You should find
that it correctly performs collections (this will only be visible if you have set
the -X:gc:verbose flag appropriately). By reading the verbose GC output
you should see data being collected from and allocated to the nursery and
mark sweep spaces.

2.5 Generational Mark-Sweep

watch this space . . .



Chapter 3

Plans

3.1 Overview

A Plan is the highest-level entity in the MMTk hierarchy. Each of the
collection/memory management schemes that MMTk provides is defined by
a single instance of a Plan. The role of a Plan is to compose lower-level
objects in the MMTk hierarchy into a coherent scheme that provides

• The layout of virtual memory, by creating a set of Spaces

• Memory allocation

• Garbage collection

• Statistics (since MMTk is a research-oriented toolkit, reporting what
is going on in the memory manager is an important goal)

In earlier releases of MMTk, a Plan was a single class that provided
all the above functions, but currently a Plan is represented by a package
with 3 or more classes. The parent package for all of the MMTk plans
is org.mmtk.plan, and the abstract superclasses that provide much of the
common functionality resides here. Individual plans are held in deeper levels
of the package hierarchy under this parent package.

3.1.1 Global and local data

MMTk is designed for multi-processor environments, and needs to consider
issues such as synchronization and cache coherence. MMTk achieves high
performance by ensuring that the most frequent operations are performed
on dedicated thread-local data structures that require no synchronization,
and infrequently operating on global data structures, but amortizing the
cost across the faster more frequent case.

One example of this is a bump-pointer allocator, that underlies the spaces
used in many of MMTk’s copying collectors. The copying memory region as

15
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a whole is managed by a CopySpace object, with synchronized methods that
allocate memory in large chunks. Each processor has a CopyLocal object (an
allocator), which essentially caches a chunk of memory for fast thread-local
access, periodically calling back to CopySpace to allocate another chunk.

This design pattern is realised by two of the three required classes for a
Plan, which are the global plan, a subclass of the Plan class, and the local
plan which is a subclass of the PlanLocal class.

3.2 Spaces

The core of a plan is a collection of regions of virtual memory, each managed
under an allocation/collection policy, and orchestrated to form a memory
management plan for a runtime environment. Some of the spaces MMTk
provides currently are

• Immortal space. Bump-pointer allocation and no collection.

• Mark-sweep space. A free-list allocator managed under a mark-sweep
collection policy with lazy sweeping.

• Large object space. Baker’s treadmill space.

• Copy space. A bump-pointer allocator with copying collection. A sin-
gle copy space can be used as a nursery in conjunction with a suitable
mature space, or a pair can be used for a semi-space collector.

• VM space. This is a space where no allocation takes place, but MMTk
will happily scan objects. This is used to denote the virtual memory
region where the virtual machine or runtime lives.

MMTk assumes that its host virtual machine will have pointers into
the heap, and possibly there will be heap objects that point to data
structures in the host virtual machine. The host virtual machine takes
care of initializing this space.

• Raw memory space. MMTk creates its own data structures in raw
memory so that it can avoid circularity issues.

Spaces themselves are described in detail in Chapter 4.
The base class Plan defines 4 spaces: a VM space, a small immortal

space, a raw memory space for collector metadata, and a large object space.
Most subclasses will define one or more new spaces, and must override meth-
ods in the Plan classes to handle operations on these new objects. Most of
the time this can be done by identifying whether the object in question is
in a space defined at this level, and dispatching to the appropriate method
of the Space, and delegating to the superclass if not.
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The actual layout of virtual memory is dictated by the constructors
that create the Spaces, and the order in which they are executed. Each
constructor implements a slightly different set of methods for specifying
how it is to consume virtual memory. The most straightforward is a space
which occupies a certain percentage of virtual memory, and is allocated at
the lowest available addresses. Another option, useful when creating nursery
spaces, is to request contiguous memory at the high end of virtual memory1.

3.3 Barriers

A barrier is a code sequence that is used to perform additional work when the
VM reads or writes to the heap. MMTk currently supports write barriers
on pointer stores, but there are patches available to extend this to read
barriers on pointer loads. Some researchers have also implemented barriers
on non-pointer loads and stores, but these are not widely used. This section
has been written assuming that read barrier support is included, but note
that this is an optional patch and not yet supported in a released version of
JikesRVM/MMTk.

Barriers, particularly read barriers can be particularly difficult to imple-
ment correctly, and can be a nightmare to debug, so a carefully structured
approach is necessary.

3.3.1 Write barriers

Write barriers are essential for generational collectors, so it is no surprise
that these are well developed and stable features of MMTk. Write barriers
are enabled by the requiresWriteBarrier method of the Constraints class of
a plan. The write barrier itself is the method writeBarrier in the PlanLocal

class.
There are two forms of write barrier in MMTk, one for single-field store

operations, and a second for array copies (since the barrier could make use
of various optimizations in the array copy case). MMTk’s write barriers are
substituting barriers, ie they must actually effect the store.

For a single field barrier, a no-op write barrier is as follows:

public void writeBarrier(ObjectReference src ,
Address slot , ObjectReference tgt , Offset metaDataA ,
int metaDataB , int mode) {

Barriers.performWriteInBarrier(src ,slot ,newTgt ,
metaDataA ,metaDataB ,mode);

}

One obvious requirement of a write barrier is that it must not trigger itself
when it performs the pointer write. This effectively means that all writes

1This allows write-barriers to identify nursery objects with a single comparison
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to heap objects in barriers must be done using the store() methods of
org.vmmagic classes, which are required not to trigger a barrier.

One unfortunate effect of a substituting write barrier is that optimizing
compilers can lose some type information. At a high level, the compiler gen-
erates code to store a typed value into a field, and this value is converted to
a magic ObjectReference type before being stored. The solution to this (for
JikesRVM and hopefully future optimizing compilers) is to provide place-
holder parameters to the write barrier, where the compiler can store some
metadata, and to perform the pointer write using the method shown above,
which allows the host VM to recover the type information it has passed in
to the barrier.

3.3.2 Read barriers

Read barriers are more complex and unfortunately their implementation
details are somewhat dictated by limitations of JikesRVM (or rather, of the
read-barrier maintainers’ understanding of JikesRVM).

Read barriers are enabled by the Constraints method needsReadBarrier.
The read barrier is implemented in three methods of a PlanLocal, readBarrier,
preReadBarrier and postReadBarrier. The code for readBarrier invokes the
pre- and post- barriers and performs the read (ie it is a substituting barrier).
Unfortunately, substituting barriers have not been made to run adequately
reliably with JikesRVM’s optimizing compiler, but non-substituting barriers
(ie pre- and post-barriers) work well. The current JikesRVM implementa-
tion uses the substituting read barrier for baseline compiled code, and the
non-substituting barriers for opt-compiled code, and other compilers are free
to use either method. For this reason, it is best if the substituting read bar-
rier code be left alone (if at all possible), and the barrier implementation be
confined to pre- and post-barriers. It is probable that passing type informa-
tion through the read barrier in a similar fashion to the write barrier will
solve the problem.

The obvious limitation on code running inside a read barrier is that it
must not trigger a read barrier itself. The simplest way to ensure this is to
only use the load and store methods of magic types to access the heap.

Performance is even more important for a read barrier, as pointer reads
are significantly more frequent than pointer writes.

3.4 Accounting

Another responsibility of a Plan is to account for the space it uses. In
particular copying collectors must ensure that their copy reserve is accounted
for when determining how much space is being used.

Space usage is reported to the rest of MMTk through 4 static methods,
all of which return an Extent.
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totalMemory() Reports the total amount of memory available. This will
be somewhere between the values of the -Xms and -Xmx command line
arguments.

freeMemory() Reports the amount of unused memory, which may include
memory held in reserve for copying.

usedMemory() The amount of memory currently allocated.

reservedMemory() The amount of memory used, plus memory reserved
for copying.

The internal calculation of space usage is done in pages, and is imple-
mented by the following methods:

getTotalPages() Returns the current size of the heap, in pages.

getPagesAvail() Pages available for allocation, after used and reserved
memory is accounted for.

getPagesReserved() Pages currently reserved, defined as pages in use
plus copy reserve.

getPagesUsed() Pages currently in use. Each plan needs to override this
method to account for pages used by spaces defined at their level of the
hierarchy. The usual formula is to add the super-class’s contribution
to that of spaces defined in the current plan instance.

getCopyReserve() Pages that are not actually used, but are nonetheless
unavailable for allocation. For a copying collector, this is the copy
reserve, although non-copying collectors may wish to reserve space for
other purposes. Plans are required to override this method if they
require space to be reserved.

The accounting system is used primarily by the poll() method, as a
contributor to the decision of when to perform a garbage collection.

3.5 Allocation

The local instance of a plan provides methods that the virtual machine or
runtime uses to allocate objects. This is one of the three most performance
critical operations that an MMTk plan provides, and is intended to be in-
lined into the mutator code at each allocation site, so great care must be
taken.

MMTk collectors provide allocation through four methods:

alloc() Initial allocation of objects.
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allocCopy() Allocate an object during a copying garbage collection phase.

postAlloc() Post-allocation gc-specific initialization. This is to be called
after the mutator’s initialization of the object.

postCopy() Post-copy initialization of an object.

The alloc() and allocCopy() methods both allocate space from a mutator-
specified allocator, which should be statically resolvable at compile time.
The expected pattern for these methods is

Address alloc(int bytes , int align , int offset , int allocator)
throws InlinePragma {
if (allocator == Plan.ALLOC_DEFAULT) {

return <allocator >. alloc(bytes , align , offset , false);
}
return super.alloc(bytes , align , offset , allocator );

}

ie, the method is inlined (into the mutator code), we dispatch to the alloc()

method of the local allocator for spaces defined at this level of hierarchy
(using a statically resolvable comparison), and delegate upwards for all other
spaces.

The allocCopy() method takes an additional parameter (the object being
copied) and needs to inform the allocator that a GC is in progress (by passing
true as the last parameter, but should otherwise be identical.

postAlloc() and postCopy()

3.6 Collection

Garbage collection is initiated by calling the collect() method of PlanLocal().
It is the responsibility of the virtual machine to ensure that this method is
called simultaneously on each processor in a parallel system, as one of the
first things MMTk does in a collection is to perform a rendezvous, which
will hang if all processors are not participating.

The exact codepath for initiating a collection actually seems rather con-
voluted at first sight, because it is in fact MMTk that decides when to
collect, not the VM. This is

There are three main components to a collection:

• The poll() method. Allocators call this periodically to allow the plan
to decide when to do a collection.

• The collection phases, implemented by the collectionPhase method
of both local and global plan classes.

• Tracing the heap, implemented in the Trace and TraceLocal classes of
a plan.
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3.6.1 Initiating a collection

Garbage collection is initiated by one of two means: the mutator can explic-
itly request a GC (eg in Java with the System.gc() method), or the memory
manager can decide that the heap is too full to satisfy an allocation request,
and it needs to first reclaim memory by doing a garbage collection.

As discussed above, memory is allocated to the mutator via the alloc()

method. This in turn requests memory from an allocator (associated with
a policy), and periodically the allocator calls the poll() method of a plan.
This call is done on the slow-path of the allocator, according to the poll
frequency specified when a given space is created.

The poll() method evaluates the current state of the heap according to
a variety of criteria, and if it decides a collection is required, it calls out
to the host VM to request a collection (Collection.triggerCollection()).
This allows the VM to prepare itself for collection, quiesce the other threads
and call PlanLocal.collect() for each virtual CPU.

Once collection is complete, poll() returns true to the allocator, which
can then perform any post-collection recovery it needs to and satisfy the
allocation request.

A user-initiated collection is much simpler, with the mutator initiating
the process somewhere inside the call to Collection.triggerCollection().

3.6.2 Collection phases

A garbage collection generally proceeds in a structured way through several
different phases. For example, a full-heap copying collector will enumerate
the roots, perform a transitive closure over the root-reachable objects, pro-
cess reference types and objects with finalizers (if supported by the host
VM/language), possibly perform the transitive closure again, and then tidy
up and complete. Between each of the phases a parallel collector must syn-
chronize. There is also housekeeping work such as gathering statistics, and
global state changes such as flipping from/ to space or changing a mark state
bit.

Collections in MMTk are performed by a method called collectionPhase()

defined for both local and global plan instances. This method takes an in-
teger parameter, phaseId, which identifies the phase of garbage collection
begin performed. These phases are defined at the layer of the plan class
hierarchy immediately below Plan, by defining a collection of Phase objects.

Each Phase represents a step in the garbage collection process performed
in parallel across all collector threads. A phase can have thread-local and/or
global components, performed in either order. Threads can also have as-
sociated timer objects, either implicitly created for the phase or created
externally so that multiple phases can accumulate time to a single timer.
There are two types of Phase: simple and complex. A complex phase is



22 CHAPTER 3. PLANS

a list of phases, which are executed in order, while a simple phase is one
implemented by the collectionPhase method. A garbage collection is defined
to be a complex collection phase, which is executed by the plan’s collect()

method.
StopTheWorld.java and its local counterpart are the root of the plan hier-

archy for most of MMTk’s collectors. This layer defines collection phases for
a classic stop-the-world collector. A typical collection phase is implemented
like this:

public void collectionPhase(int id) throws InlinePragma {
...
if (id == PREPARE) {

super.collectionPhase(id);
// Do the necessary work

return;
}
...
super.collectionPhase(id);

}

Each layer in the plan hierarchy should contribute code to collect the re-
sources defined at that level, and then delegate up the class hierarchy. The
order in which collectors delegate and perform their own work is important
and can lead to subtle problems, so some care is required. If in doubt,
look at the order the existing collectors do things in, and copy that. The
InlinePragma on the collectionPhase method ensures that precise type in-
formation is passed to method calls wherever possible, and helps to improve
the performance of the tracing code.

3.6.3 Tracing the heap

At some point, all garbage collectors need to discover which objects are live
by enumerating the pointers in a known live object. Tracing collectors go
on to perform a transitive closure operation over the set of live objects, and
reference counting objects use this information to perform decrements when
an object is collected. This process is encapsulated in MMTk plans inside a
Trace object (with local and global components).

The process is best understood in the context of a full-heap tracing
collector such as the Mark-Sweep collector. The core of the mark sweep
trace in MMTk is:

• Enumerate the roots, pushing the locations of the root pointers into a
queue.

• Iterate through the root queue, marking the objects pointed to as
reachable, and pushing the locations of currently untraced objects onto
the work queue.
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• Iterate over the work queue, marking objects, enumerating their point-
ers and enqueueing reachable objects for scanning. The iteration ter-
minates when the queue is empty. This iterative scanning process is
the most performance critical operation in most collectors.

The MMTk collectors mostly implement parallel tracing, using queue
structures with fast thread-local and slower shared data pools.

The global instance of the tracing class usually holds just the shared
components of the tracing queues, and none of the existing collectors need
to extend the base class Trace.java. Each shared queue in Trace has an
unsynchronized component in the TraceLocal class.

Tracing the heap must also support various flavours of weak references
and finalization. For most collectors, it usually only makes sense to ask
whether an object is live or not in the time between tracing the heap and
allowing the mutator to resume. The Trace class provides several methods
that allow reference types to query the status of objects, and potentially
resurrect them (eg for finalization).

The key methods provided by the TraceLocal class are:

addRootLocation() Add a location to the root set. Locating the root
set is a VM-dependent operation, and MMTk passes the TraceLocal

object to a method the VM provides, and the VM calls this method
to add roots to the queue. See the ROOTS phase of StopTheWorld’s
collectionPhase method.

addInteriorRootLocation() As for root locations, this allows for roots
that are in fact interior pointers.

startTrace() Perform the initial trace of the root set.

completeTrace() Perform the transitive closure over the heap.

enqueue() Enqueue an object for tracing.

traceObject() Trace an object. The actual tracing operation depends on
the collection policy of the space in which the object lives, so this
method generally finds the space that the object lives in and calls the
space’s trace method. In order to accommodate copying collectors,
this method returns the new address of the object.

traceObjectLocation() Given the address of a pointer (a ’slot’), trace the
object it points to, and install the resulting pointer.
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Chapter 4

Policies

A policy in MMTk implements a region of virtual memory with an associated
allocation and collection mechanism. As usual with MMTk structures, a
policy consists of a synchronized global component and an unsynchronized
local component. The separation of concerns between the global and local
components is more pronounced than with the Plan hierarchy, and global
policies are known as Spaces, while local policies are Allocators.

4.1 Spaces

A Space manages a range of virtual memory1 according to a given allocation
and collection policy.

The root of the class hierarchy is the abstract Space class. The public
interface provided by this class is

Constructors MMTk provides several ways to specify the layout of vir-
tual memory, and these are encapsulated in the constructors of a Space.
The most commonly used constructors lay out virtual memory sequen-
tially from a defined base address. The constructors allow the size of
a space to be specified as either a fixed size (used for spaces such as
the VM space and the metadata space) or a percentage of available
virtual memory.

The other layout option is to require one space to occupy either the
highest or lowest range of addresses. This provides a very efficient test
of whether an object occupies this space, and is suitable for spaces such
as the nursery in a generational collector, where object membership
must be tested in a write barrier.

Basic geometry information Which describe the layout of a space: its
lowest and highest addresses etc.

1Currently restricted to be a contiguous space.

25
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Accounting Numbers of pages committed and reserved explain.

Tracing An abstract traceObject() method, plus prepare() and release().

Liveness Abstract method isLive(), and isReachable)()

Coarse grained allocation A Space provides synchronized allocation in
units of pages.

Closely associated with a Space is the SpaceDescriptor class, which the
encoding of the ‘vital statistics’ of a space into an int. When used in a plan to
create a static final int descriptor for a space, it allows fast tests for space
membership to be created by a sufficiently good compiler. For example, in
the MarkSweep plan, we create the space descriptor MS as follows

Space ms = new MarkSweepSpace( ... );
static final int MS = ms.getDescriptor ();

and can subsequently write

if (Space.isInSpace(MS ,object )) {
...

}

with reasonable confidence that the isInSpace() method will be expanded
by the compiler to code that is a moderately optimal membership test.

4.2 Allocators
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Utilities

27



28 CHAPTER 5. UTILITIES



Chapter 6

Portability
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Chapter 7

Java Extensions

It is not possible to do low-level systems-style programming in Java 1.4, so
MMTk requires its host Java compilers to support a modest set of exten-
sions to the language. These extensions come in the form of a set of Java
classes which are implemented as ‘unboxed’ words, and a set of interfaces
and exceptions that direct the code generation of the underlying compiler.

7.1 Unboxed types

One basic essential operation for a memory manager is to manipulate ob-
jects in memory without regard to their type, and to perform address arith-
metic and other calculations, as well as to access the metadata areas of
objects. The org.vmmagic.unboxed package defines objects such as Address,
with methods like load, add and store, which access memory directly. The
compiler is required to implement an Address as a single machine word,
and is expected to implement its methods with inlined optimal instruction
sequences.

The objects provided by org.vmmagic.unboxed are:

Word

Address

Offset

Extent

ObjectReference

7.2 Pragmas
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Appendix A

VM Interface Specification

MMTk’s interface to the host VM is specified as a package, org.mmtk.vm,
containing several classes. MMTk provides stub implementations of these
classes that it compiles against; the VM must provide the real implementa-
tions at run time.

In the descriptions given below, the method signatures of the interface
methods are given. Since this is an interface, all methods are declared
public, but in the interests of saving space, the public modifier has been
elided from the definition given.

A.1 The active plan

MMTk by definition is a toolkit that provides several memory management
schemes from which its host VM can choose. For performance reasons, the
VM should define a final sub-class of whichever Plan it intends to use, and
it must create one global instance and one local instance per processor. The
ActivePlan class allows MMTk to locate these instances.

static final Plan global ()
static final PlanLocal local()
static final PlanLocal local(int id)

These methods return the active global and local plan instances.

static final PlanConstraints constraints ()

Returns the current constraints object instance.

static final int localCount ()

The number of registered PlanLocal instances (should be equal to the num-
ber of CPUs).

static final int registerLocal(PlanLocal local)

Register a new PlanLocal instance. Returns a unique identifier which can
be used to retrieve the instance later (calling local(int)).

33
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A.2 Assertions

While MMTk makes heavy use of assertions, it does not use the Java assert

statement because it aims to interact nicely with various host runtimes. Pro-
viding access to assertions in this way allows the runtime to exit gracefully
in ways that might not be possible if the Java compiler were to use its own
assertion checking mechanism.

static final boolean VERIFY_ASSERTIONS;

Whether assertions are being checked. The code idiom for checking asser-
tions is

if( Assert.VERIFY_ASSERTIONS )
Assert._assert (...);

and since VERIFY_ASSERTIONS is declared final, we rely on the compiler’s dead
code elimination to remove the assertion completely when we are compiling
for performance.

There are three ways that MMTk can ask the VM to fail on error—this
is probably due for rationalization.

static void error(String str)

Requests that the VM fails with an error.

static void fail(String message)

Requests that the VM fails with a stack trace and an error.

static void exit(int rc)

Requests that the VM fails with an error.

static void _assert(boolean cond)
static void _assert(boolean cond , String s)

Assert that a condition is true, and fail if it is not, optionally with a message.
It is a checked error to call this if VERIFY_ASSERTIONS is false.

static final void dumpStack ()

Print a stack dump, but don’t exit. Useful for some forms of verbose debug-
ging output.

static void failWithOutOfMemoryError ()

Throw an out of memory exception, giving the VM a chance to prepare.

static boolean runningVM ()

Are we running, or in some kind of initialization/build phase.
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A.3 Barrier support

For a Java in Java implementation, read and write barriers require special
support, especially if they are substituting barriers. The class Barriers

provides the necessary support.

static void setArrayNoBarrier(char[] dst , int index ,
char value)

Sets an element of a char array without invoking any write barrier. This
method is called by the Log class, as it will be used during garbage collection
and needs to manipulate character arrays without causing a write barrier
operation.

static void performWriteInBarrier(ObjectReference ref ,
Address slot , ObjectReference target , Offset offset ,
int locationMetadata , int mode)

Perform the actual write of the write barrier. The parameters specify the ob-
ject being written to, the address of the pointer field being updated, the new
value of the field, and the mode (PUTFIELD, PUTSTATIC, AASTORE).

The offset and locationMetadata parameters allow the optimizing com-
piler to preserve type information across the write barrier - the write barrier
is invoked with these parameters, and MMTk simply passes them back in
this call. This is currently JikesRVM specific.

static ObjectReference performWriteInBarrierAtomic(
ObjectReference ref , Address slot , ObjectReference target ,
Offset offset , int locationMetadata , int mode)

Atomically write a reference field of an object or array and return the old
value of the reference field.

static char getArrayNoBarrier(char[] src , int index)
static byte getArrayNoBarrier(byte[] src , int index)
static int getArrayNoBarrier(int[] src , int index)
static Object getArrayNoBarrier(Object [] src , int index)
static byte[] getArrayNoBarrier(byte [][] src , int index)

Gets an element of an array without invoking any read barrier, performing
a bounds check or allowing a thread switch.

A.4 Collection

The Collection class allows MMTk and the VM to perform garbage collec-
tions.

Either party can trigger a collection by calling the triggerCollection

method. The VM is required to prepare itself for collection, and then sched-
ule a thread on each running processor which calls the MMTk plan’s collect
method.
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static final int UNKNOWN_GC_TRIGGER = 0;

An unknown GC trigger reason. Signals a logic bug.

static final int EXTERNAL_GC_TRIGGER = 1;

Externally triggered garbage collection (eg call to System.gc())

static final int RESOURCE_GC_TRIGGER = 2;

Resource triggered garbage collection. For example, an allocation request
would take the number of pages in use beyond the number available.

static final int INTERNAL_GC_TRIGGER = 3;

Internally triggered garbage collection. For example, the memory manager
attempting another collection after the first failed to free space.

static final int TRIGGER_REASONS = 4;

The number of garbage collection trigger reasons.

static final double OUT_OF_MEMORY_THRESHOLD = 0.98;

The percentage threshold for throwing an OutOfMemoryError. If, after
a garbage collection, the amount of memory used as a percentage of the
available heap memory exceeds this percentage the memory manager will
throw an OutOfMemoryError.

static final void triggerCollection(int why)

Triggers a collection, specifying one of the above reasons.

static final void triggerCollectionNow(int why)

Triggers a collection without allowing for a thread switch. This is needed
for the Merlin lifetime analysis used by the GCTrace plan.

static final void triggerAsyncCollection ()

There are situations where MMTk may decide that a GC is required, but
for various reasons it is impossible to collect immediately. It sets a flag, and
at a later stage an asynchronous collection is initiated via this method.

static final boolean noThreadsInGC ()

Determine whether a collection cycle has fully completed (this is used to
ensure a GC is not in the process of completing, to avoid, for example, an
async GC being triggered on the switch from GC to mutator thread before
all GC threads have switched.

private static final void checkForExhaustion(int why , boolean async)

Check for memory exhaustion, possibly throwing an out of memory excep-
tion and/or triggering another GC.

static boolean isNonParticipating(PlanLocal plan)
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CPUs that are blocked in JNI calls cannot participate in GC, but their
resources still need to be managed through the GC. This method tests for
non-participating plans.

static void prepareNonParticipating(PlanLocal p)

This method allows the VM to perform its own preparation on a non-
participating CPU.

static void prepareParticipating (PlanLocal p)

Set a collector thread’s so that a gc will occur when it next executes.

static int rendezvous(int where)

Rendezvous with all other processors, returning the rank (that is, the order
this processor arrived at the barrier).

static void scheduleFinalizerThread () {

Schedule the finalizerThread, if there are objects to be finalized and the
finalizerThread is on its queue (ie. currently idle). Should be called at the
end of GC after moveToFinalizable has been called, and before mutators are
allowed to run.

A.5 Locking

Implemented in the class Lock. Simple, fair locks with deadlock detection.

Lock(String str)

Locks are given a name when they are constructed, which helps in debugging
and/or error output.

void acquire ()

Tries to acquire a lock and spin-waits until it is acquired.

void check (int w)

Sanity-check a lock—used for debugging.

void release ()

Releases the lock by incrementing the serving counter.

A.6 Memory

This is how the collector interfaces with the underlying operating system to
acquire and release raw memory.

static Address HEAP_START ()
static Address HEAP_END ()
static Address AVAILABLE_START ()
static Address AVAILABLE_END ()
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These methods allow MMTk to inquire about the layout of virtual memory.
HEAP_START() and HEAP_END() define the bounds of the virtual address region
where MMTk will encounter objects. This can include areas that are man-
aged by the VM. AVAILABLE_START() and AVAILABLE_END() define a subrange
of the heap where MMTk is free to manage as it likes.

static ImmortalSpace getVMSpace ()

Return the space associated with/reserved for the VM.

static void globalPrepareVMSpace ()
static void localPrepareVMSpace ()
static void localReleaseVMSpace ()
static void globalReleaseVMSpace ()

These methods allow the VM to do global and thread-local work before and
after collection of the VM’s space.

static void setHeapRange(int id , Address start , Address end)

Inform the VM the range of addresses associated with a portion of the heap.

static int mmap(Address start , int size)
static boolean mprotect(Address start , int size)
static boolean munprotect(Address start , int size)

These methods interact with the underlying OS to map and set protection
on memory regions.

static void zero(Address start , Extent len)
static void zeroPages(Address start , int len)

Use the VM or underlying OS to zero memory regions. zeroPages is assumed
to be more efficient for large regions of memory, and expects start and len
to describe a region that starts and finishes on a page boundary.

static void dumpMemory(Address start , int beforeBytes ,
int afterBytes)

Logs the contents of an address and the surrounding memory to the error
output, for debugging purposes.

The following two methods provide support for processors with weak
memory models.

static void sync()
static void isync()

sync() is a memory barrier for data writes. All writes performed before
this point are guaranteed to be visible on all processors after this method
completes.

isync() is a memory barrier for the instruction stream. All instructions
currently being executed are allowed to run to completion, and all specu-
lative fetches and execution is discarded. Code motion past an isync() is
prohibited.
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A.7 Object model

This interface class allows MMTk to access object metadata, and abstract
over many of the fine details of object metadata implementation. Objects
may (for instance) have headers embedded in the object, or in side data
structures, and Object References could potentially be implemented as Han-
dles. By using these operations to access object metadata, MMTk preserves
implementation independance.

static ObjectReference copy(ObjectReference from , int allocator)

Copy an object using a plan’s allocCopy to get space and install a forwarding
pointer. On entry, from must have been reserved for copying by the caller (to
prevent another GC thread from attempting to copy the same object). This
method calls the plan’s getStatusForCopy() method to establish a new status
word for the copied object and postCopy() to allow the plan to perform any
post copy actions.

Delegating this to the VM allows it to optimize the copying process for
arrays, and also to react appropriately if objects vital to it are moved (for
example, moving a chunk of code requires a memory barrier).

static int getSizeWhenCopied(ObjectReference object)

Return the size required to copy an object. Implementations of Java address-
based hashing, for example, can require an extra header word when a hashed
object is copied.

static int getCurrentSize(ObjectReference object)

Return the size used by an object, counting fields and metadata.

static ObjectReference getNextObject(ObjectReference object)

Return the next object in the heap under contiguous allocation. This allows
algorithms such as a Cheney scan to ‘walk the heap’.

static ObjectReference getObjectFromStartAddress(Address start)

Return an object reference from knowledge of the low order word. It is
common for a pointer to an object to point to an actual field in the object,
rather than the start of the header. This method allows the VM to convert
between the two without requiring MMTk to know the details.

static Address objectStartRef(ObjectReference object)

Returns the lowest address of the storage associated with an object.

static Address refToAddress(ObjectReference object)

Returns an address guaranteed to be inside the storage assocatied with an
object.

static byte [] getTypeDescriptor(ObjectReference ref)
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Get the type descriptor for an object. A sequence of bytes we can print out
in a debugging message to identify the type of an object.

static int getArrayLength(ObjectReference object)

Get the length of an array object, in elements.

static boolean isAcyclic(ObjectReference typeRef)

Checks if a reference of the given type in another object is inherently acyclic.
This allows MMTk to optimize cycle detection in its reference counting
collectors. Returning false for all objects is correct, but inefficient, however
returning true for an object that could participate in a cycle could lead to
uncollectable garbage.

A.7.1 Object layout

During a heap trace, MMTk makes a call to the VM for each object it
encounters to get information about the object, such as where its pointer
fields are located. This is communicated by passing an MMType object.

static MMType getObjectType(ObjectReference object)

An MMType object abstracts over the characteristics of an object that MMTk
needs to know about in order to scan it. Generally, an MMType object will be
created by the classloader when a class is loaded.

From the point of view of the VM, only the constructor is public.

final class MMType {
MMType(boolean isDelegated , boolean isReferenceArray ,

boolean isAcyclic , int allocator , int [] offsets)
}

If isDelegated is true, then instead of using the MMType object to scan
the object, the object will be passed to Scanning.scanObject for the VM to
process. This allows for object layouts that are too complex to be efficiently
encoded in an MMType.

A.7.2 GC metadata

Most GC algorithms require some amount of per-object metadata, for mark
bits, ’being forwarded’ bits, forwarding words. The current MMTk interface
expects the VM to reserve several bits for MMTk metadata as the low-order
bits of a metadata word. It also expects the forwarding pointer for copied
objects to be written to the (higher order) bits of that word.

static boolean testAvailableBit(ObjectReference object , int idx)
static void setAvailableBit(ObjectReference object , int idx ,

boolean flag)

Non-atomically test and set a bit available for memory manager use in an
object.
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static Word prepareAvailableBits(ObjectReference object)
static boolean attemptAvailableBits(ObjectReference object ,

Word oldVal , Word newVal)

This pair of methods implement atomic modification of the GC bits for
an object. These two operations are commonly implemented as either
load-locked/store conditional, load and compare-and-swap (CAS) or other
architecture-specific mechanism.

static Word readAvailableBitsWord(ObjectReference object)
static void writeAvailableBitsWord(ObjectReference object ,

Word val)

Reads and writes to the word containing the bits available for memory man-
ager metadata.

static Offset GC_HEADER_OFFSET ()

A method in the Constraints object can request additional words be made
available in an object header. This method gets the offset of the memory
management header from the object reference address. The object model
/ memory manager interface will at some point be improved so that the
memory manager does not need to know this.

A.8 Command-line options

MMTk provides a large set of parameters that can be used at run-time to
control its operation, for troubleshooting or performance tuning purposes.
The Options class allows MMTk to interface with VMs that may have their
own idea of how certain aspects of GC are configured on the command line.

static String getKey(String name)

MMTk passes the VM its name for one of its parameters, and the VM
returns the name that MMTk can expect to see on the command line. To
just use MMTk’s names, pass the same string back.

static void fail(Option o, String message)

Failure during option processing. This must never return.

static void warn(Option o, String message)

Warning during option processing.

A.9 Reference types

The ReferenceGlue class manages SoftReferences, WeakReferences, and Phan-
tomReferences. When a java/lang/ref/Reference object is created, its ad-
dress is added to a list of pending reference objects of the appropriate type.
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An address is used so the reference will not stay alive during gc if it isn’t in
use elsewhere the mutator. During gc, the various lists are processed in the
proper order to determine if any Reference objects are ready to be enqueued
or whether referents that have died should be kept alive until the Reference
is explicitly cleared. The ReferenceProcessor class drives this processing
and uses this class to scan the lists of pending reference objects.

Elsewhere, there is a distinguished Finalizer thread. At the end of gc, if
needed and if any Reference queue is not empty, the finalizer thread is sched-
uled to be run when gc is completed. This thread calls Reference.enqueue()
to make the actual notifcation to the user program that the object state has
changed.

This is currently somewhat Java specific, and will probably need gener-
alizing for other languages.

static final int SOFT_SEMANTICS;
static final int WEAK_SEMANTICS;
static final int PHANTOM_SEMANTICS;

Identifiers for the semantics that the reference processor knows about, de-
fined in the ReferenceProcessor class.

static final boolean REFERENCES_ARE_OBJECTS;

Whether references are implemented as heap objects (rather than in a table,
for example).

static void scanReferences(int semantics , boolean nursery)

Scan through the set of references with the specified semantics. If ’nursery’
is true, only reference objects identified since the last GC are scanned—a
performance hint for generational collectors.

static final boolean enqueueReference(Address addr ,
boolean onlyOnce)

Put this Reference object on its ReferenceQueue (if it has one) when its
referent is no longer sufficiently reachable. The definition of ”reachable” is
defined by the semantics of the particular subclass of Reference.

static ObjectReference getReferent(Address addr)

Get the referent from a reference. For Java the reference is a Reference
object.

static void setReferent(Address addr , ObjectReference referent)

Set the referent in a reference. For Java the reference is a Reference object.

static int countWaitingReferences(int semantics)

Return the number of references being managed with a given semantics.
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A.10 Scanning support

The key operations in tracing the heap are enumerating roots and scanning
objects, and the interface for this is in the Scanning class.

static void preCopyGCInstances(TraceLocal trace)

Pre-copy all potentially movable instances used in the course of GC. This
includes the thread objects representing the GC threads themselves. It is
crucial that these instances are forwarded prior to the GC proper. Since
these instances are not enqueued for scanning, it is important that when
roots are computed the same instances are explicitly scanned and included
in the set of roots. The existence of this method allows the actions of
calculating roots and forwarding GC instances to be decoupled.

static void computeAllRoots(TraceLocal trace)

Computes all roots. This method establishes all roots for collection and
places them in the root values, root locations and interior root locations
queues. This method should not have side effects (such as copying or for-
warding of objects). There are a number of important preconditions:

• All objects used in the course of GC (such as the GC thread objects)
need to be ‘pre-copied’ prior to calling this method.

• The threadCounter must be reset so that load balancing parallel GC
can share the work of scanning threads.

For each root identified, computeAllRoots calls either the addRootLocation

or addInteriorRootLocation method of the trace object.

static void resetThreadCounter ()

Prepares for using the computeAllRoots method. The thread counter allows
multiple GC threads to co-operatively iterate through the thread data struc-
ture (if load balancing parallel GC threads were not important, the thread
counter could simply be replaced by a for loop).

A.10.1 Delegated scanning

Scanning an object is a performance critical operation for a garbage collec-
tor, so as far as possible MMTk performs the operation in one of its own
classes. In order to provide a uniform interface to disparate object models,
the MMType class (Section A.7.1) is used to communicate the details of object
layout between MMTk and the host VM.

Some objects in a virtual machine are sufficiently complex that encoding
the description into a variant of an MMType object would be difficult, so
MMTk allows the VM to request that object scanning be delegated back to
it, and the following three methods provide the interface for this mechanism.
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static void scanObject(TraceLocal trace ,
ObjectReference object)

This method provides for delegated object scanning. When tracing an ob-
ject, the scanObject method must call

trace.traceObjectLocation(Address slot)

on each pointer in the object.

static void precopyChildren(TraceLocal trace ,
ObjectReference object)

This method provides for delegated pre-copying. When precopying an ob-
ject’s children, the precopyChildren method must call

trace.precopyObjectLocation(Address slot)

on each pointer in the object.

static void enumeratePointers(ObjectReference object ,
Enumerator e)

Some collectors need to trace the heap (or subgraphs thereof) in several dif-
ferent ways, using subclasses of the abstract Enumerator type. One example
is the recursive decrement operation of a reference counting collector. This
method allows delegated enumeration, and must call

e.enumeratePointerLocation(Address slot)

on each pointer field in the object.

A.11 Statistics

MMTk provides detailed statistics on many aspects of its operation. The
Statistics class provides the necessary VM support for this.

static final int getCollectionCount ()

The number of collections that have occured.

static long cycles ()

The current time, in a VM-specific unit.

static double cyclesToMillis(long c)
static double cyclesToSecs(long c)
static long millisToCycles(double t)
static long secsToCycles(double t)

These methods convert between the opaque ‘cycles’ and more meaningful
units.
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A.12 String handling

Certain parts of MMTk, such as message logging and options parsing, require
string handling. For obvious reasons, MMTk can’t use the standard Java
library functions, so it requires the VM to implement these methods.

static int parseInt(String value)
static float parseFloat(String value)

Primitive parsing facilities.

static void write(char [] c, int len)

Debugging messages in MMTk are handled via the Log class, and this
method is required to support it.

static void writeThreadId(char [] c, int len)

Logs a thread identifier and a message.

static int copyStringToChars(String src , char [] dst ,
int dstBegin , int dstEnd)

Copies characters from the string into the character array. Thread switching
is disabled during this method’s execution.

A.13 GC Tracing support

These facilities are required to support the Merlin lifetime analysis used by
MMTk’s GCTrace plan. If you don’t intend to use GCTrace, this class can
be regarded as optional.

static final boolean gcEnabled ()

static final Offset adjustSlotOffset(boolean isScalar ,
ObjectReference src ,
Address slot)

static final Address skipOwnFramesAndDump(ObjectReference typeRef)

static void updateDeathTime(Object obj)

static void setDeathTime(ObjectReference ref , Word time_)

static void setLink(ObjectReference ref , ObjectReference link)

static void updateTime(Word time_)

static Word getOID(ObjectReference ref)

static Word getDeathTime(ObjectReference ref)
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static ObjectReference getLink(ObjectReference ref)

static Address getBootImageLink ()

static Word getOID ()

static void setOID(Word oid)

static final int getHeaderSize ()

static final int getHeaderEndOffset ()

A.14 Constants

The VMConstants class defines certain characteristics of the surrounding en-
vironment. These constants are defined as methods to prevent the bytecode
compiler from doing any constant folding, but are expected to inline down
to a compile-time constant by the time the VM is built.

static final byte LOG_BYTES_IN_ADDRESS ()
static final byte LOG_BYTES_IN_WORD ()
static final byte LOG_BYTES_IN_PAGE ()

The log base two of the size of an address, a word and an OS page respec-
tively.

static final byte LOG_MIN_ALIGNMENT ()

The log base two of the minimum allocation alignment.

static final byte MAX_ALIGNMENT_SHIFT ()

The log base two of (MAX_ALIGNMENT/MIN_ALIGNMENT). Allows MMTk to cal-
culate the maximum allowable alignment.

static final int MAX_BYTES_PADDING ()

The maximum number of bytes of padding to prepend to an object.
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Exported interface

While the services that MMTk requires from its host VM is well defined
through the org.mmtk.vm package, the interface in the opposite direction is
less clear. The majority of the VM’s requirements should be satisfiable by
the public methods and constants in the Plan class, although some of these
are only designed to be called from within MMTk and most VMs will also
require types and methods defined in the Utility package. The definition of
this interface is still a work in progress.

Part of the difficulty in specifiying this interface is that MMTk provides
a relatively general purpose set of functionality, out of which each VM is in-
tended to build its own custom interface. The model we advocate is that the
host VM define exactly what services it wants from MMTk and implement
that requirementan interface package.

In order to illustrate both the model and the types of services that MMTk
can rpovide the host VM, the JikesRVM interface is described here.

B.1 JikesRVM’s MM Interface

JikesRVM uses a package containing several classes to provide its interface
to JikesRVM.

B.1.1 MM Interface

As discussed in Chapter 3, MMTk communicates its requirements to the vir-
tual machine through a PlanConstraints object. JikesRVM’s MM interface
converts these requirements into constants in the interface.

public static final boolean NEEDS_WRITE_BARRIER
public static final boolean NEEDS_PUTSTATIC_WRITE_BARRIER
public static final boolean NEEDS_TIB_STORE_WRITE_BARRIER

These three constants tell the VM whether MMTk requires write barri-
ers, and if so, whether it requires certain specific types of write barrier.

47
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JikesRVM enumerates the static fields as roots, and so never requires a
PUTSTATIC write barrier.

public static final boolean MOVES_OBJECTS

This tells the VM whether it can expect objects to move, triggering for
example tri-state hash value processing.

public static final boolean MOVES_TIBS

A TIB (Type Information Block) is what each object points to to obtain
per-type information. MMTk doesn’t know anything about TIBs per se, so
this information is internal to JikesRVM.

public static final boolean GENERATE_GC_TRACE

Advises the VM whether GC Tracing is happening.
JikesRVM’s initial boot image is created using Java reflection (see the

JikesRVM home page and relevant publications for details), and so initial-
ization occurs at build time, when the boot image is written, and again at
run time. MMTk does not require any explicit initialization at build time,
but the design takes into account that static initialization is done at this
time.

public static final void init()

Initialization that occurs at build time. The value of statics as at the com-
pletion of this routine will be reflected in the boot image. Any objects
referenced by those statics will be transitively included in the boot image.

public static final void boot(VM_BootRecord theBootRecord)

Initialization that occurs at boot time (runtime initialization). This is only
executed by one processor (the primordial thread). Several of MMTk’s
classes require initialization at this time.

public static void postBoot ()

Perform postBoot operations such as dealing with command line options
(this is called as soon as options have been parsed, which is necessarily after
the basic allocator boot). MMTk has a single post boot method (in Plan)
which must be called at this time, and which performs initialization tasks
that require knowledge of the command-line options.

public static void fullyBootedVM ()

Notifies MMTk that the host VM is now fully booted.

public static void processCommandLineArg(String arg)

Tells MMTk about one of the gc-specific command line arguments.
If REQUIRES_WRITE_BARRIER is set, JikesRVM compiles bytecodes that

write to the heap as calls to these methods, which in turn call the ap-
propriate method on PlanLocal.
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public static void putfieldWriteBarrier(Object ref , Offset offset ,
Object value ,int locationMetadata)

public static void putstaticWriteBarrier(Offset offset , Object value)

public static void arrayStoreWriteBarrier(Object ref , int index ,
Object value)

public static boolean arrayCopyWriteBarrier(Object src ,
Offset srcOffset , Object tgt , Offset tgtOffset , int bytes)

The putField and arrayStore write barriers both call the single-field form of
MMTk’s write barrier (as would the putstatic barrier if it were used), with
a context parameter to identify the operation that caused it.

public static void modifyCheck(Object object)

Checks that if a garbage collection is in progress then the given object is not
movable. If it is movable error messages are logged and the system exits.
This is used purely for sanity checking.

public static final int getCollectionCount ()

Find out how many GCs have occurred.

public static final Extent freeMemory ()
public static final Extent totalMemory ()
public static final Extent maxMemory ()
public static Extent getMaxHeapSize ()
public static Extent getInitialHeapSize ()

These methods allow the VM to access basic memory statistics.

public static final void gc()

External call to force a garbage collection.

public static void dumpRef(ObjectReference ref)

Logs information about the target of a reference to the error output.

public static boolean validRef(ObjectReference ref)

Checks if a reference is valid.

public static boolean addressInVM(Address address)

Checks if an address refers to an in-use area of memory.

public static boolean objectInVM(ObjectReference object)

Checks if a reference refers to an object in an in-use area of memory.
MMTk identifies the different regions it manages by an allocator id (an

int), and provides a set of constants that the interface can use to choose
among them.

public static int getDefaultAllocator ()
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Returns the default allocator.

public static int pickAllocator(VM_Type type , VM_Method method)

Chooses an appropriate allocator for a given method and object type. This
method is called by the compiler(s) when a method is compiled, not when
a method is executed.

public static Object allocateScalar(int size ,
Object [] tib , int allocator , int align , int offset)

public static Object allocateArray(int numElements , int logElementSize ,
int headerSize , Object [] tib , int allocator , int align , int offset)

public static Address allocateSpace(SelectedPlanLocal plan ,
int bytes , int align , int offset , int allocator ,
ObjectReference from)

These methods allocate scalars, arrays, and space for copied objects.

public static final Offset alignAllocation(
Offset initialOffset , int align , int offset)

Align an allocation using some modulo arithmetic to guarantee the following
property:

(region + offset) % alignment == 0

public static VM_CodeArray allocateCode(int numInstrs , boolean isHot) {
public static byte[] newStack(int bytes , boolean immortal)
public static Object [] newTIB (int n)
public static VM_CompiledMethod [] newContiguousCompiledMethodArray(int n)
public static VM_DynamicLibrary [] newContiguousDynamicLibraryArray(int n)

Various specialized allocation routines.

public static void addFinalizer(Object object)
public static Object getFinalizedObject ()
public static void addSoftReference(SoftReference obj)
public static void addWeakReference(WeakReference obj)
public static void addPhantomReference(PhantomReference obj)

Finalizers and weak references.

public static void emergencyGrowHeap(int growSize)

Increase heap size for an emergency, such as processing an out of memory
exception.

public static void notifyClassResolved(VM_Type vmType)

A new type has been resolved by the VM. Create a new MM type to reflect
the VM type, and associate the MM type with the VM type.

public static void harnessBegin ()
public static void harnessEnd ()
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Generic hooks to allow benchmarks to be harnessed. A plan may use this to
perform certain actions prior to the commencement of a benchmark, such
as a full heap collection, turning on instrumentation, etc.

public static boolean mightBeTIB(ObjectReference obj)

Check if object might be a TIB.

public static final boolean gcInProgress ()

Returns true if GC is in progress.

public static void startGCspyServer ()

Start the GCspy server


