
Porting the JMTk memory management toolkit

Robin Garner
Department of Computer Science

Australian National University
Canberra, ACT, 0200, Australia
u3401953@student.anu.edu.au

ABSTRACT
JMTk is a memory management toolkit written in Java, originally
for the JikesRVM Java Virtual Machine. JMTk provides reusable
components for the development of allocation and garbage collec-
tion algorithms, an efficient implementation of a rapidly growing
number of memory management schemes, and is an important en-
abler for memory management research. A portable version of
JMTk will allow the growing body of memory management re-
search done using it to be repeated in different language environ-
ments, and to study the different performance characteristics of al-
gorithms across programming languages without the variation in
implementation technique that clouds such issues today.

This paper describes the process of porting JMTk for use in
C/C++ based language runtimes. The portable system uses the gcj
ahead-of-time Java compiler and a source transformation technique
to produce a version of JMTk that can perform memory manage-
ment for traditionally compiled systems. It is currently running in a
testbed environment, where it provides a comparison between accu-
rate and conservative garbage collection techniques. Incorporation
into a Haskell and C# language runtime are in progress. The source
transformation tool is currently in use by a team of researchers in-
tegrating JMTk into the OVM Java Virtual Machine.

This paper describes the architecture and construction of the ported
system, the source code transformation process used, and provides
the performance results obtained so far.

1. INTRODUCTION
Automatic memory management (garbage collection) [12, 17] is an
increasingly important field of computer science, as languages such
as Java and C# become more popular in commercial applications.
While a great deal of research has taken place since McCarthy’s
LISP system introduced garbage collection in 1960 [13], few of the
known algorithms have been directly compared without significant
variation in the implementation details of the collector. JMTk is a
garbage collection toolkit originally developed for Jikes RVM and
described in [4], and has facilitated the first ‘apples to apples’ com-
parison of a wide range of collectors in the same environment [3].
This paper describes the process of porting JMTk so that it can be

used from C/C++-based language runtime environments. It sum-
marises work done for an Honours project—more details can be
found in [8].

1.1 Implementing memory management
After more than 40 years, garbage collection is still an active area of
research. One of the reasons for this is that the relative performance
of the techniques used are dependent on fine details of language and
program behaviour, and subtle variation in implementation tech-
nique. Most garbage collectors are implemented in monolithic C,
and are tightly coupled with the language runtime environment for
which they are designed, making portability difficult. The construc-
tion of a garbage collector requires significant software engineering
effort, and so language implementors are generally restricted in the
number of GC schemes they can implement. Performance com-
parisons of a number of algorithms in the same environment are
rare, and comparisons of the same algorithm across a number of
environments are nonexistent.

A high performance portable toolkit for building memory man-
agers, that language implementors could use ‘off the shelf’ would
help to address this gap. JMTk provides a flexible toolkit for Java
virtual machines, and is currently in use in Jikes RVM and OVM,
and making this more widely available should facilitate memory
managemnt research beyond the Java virtual machine environment.

Previous automatic memory management toolkits include the UMass
Language Independent GC Toolkit [11] and GCTk [5]. For a com-
parison of the various memory management toolkits, see Blackburn
et al. [3].

1.2 Construction of JMTk
The first issue that a systems-level program written in Java needs
to tackle is how to represent the low-level machine-dependent fea-
tures from which Java is designed to be free. Two broad approaches
are available in doing this: the first is to use Java’s primitive types
to represent equivalently sized low-level objects, and to use native
methods to call ‘down’ to unsafe languages such as C; and the sec-
ond is to extend the Java language. Jikes RVM and OVM take the
second approach, but use idiomatic Java [7] rather than syntactic
extensions to implement the low-level features.

JMTk follows the Jikes RVM idiom [2, 1]. Five special types are
recognized by the compiler, and are used to represent pointers, raw
words of memory etc. The canonical example is the VM Address
class, which represents an address in the underlying machine ar-
chitecture. From the perspective of a programmer in Jikes RVM, a
VM Address is a slightly restricted kind of object, with methods
for address arithmetic and conversion to and from the types Ob-
ject and int. When the Jikes RVM compiler processes objects
of this class, they are represented as address words of the appropri-
ate length, and the methods are compiled to optimal machine code

sequences for address arithmetic etc.
The main components of the JMTk idiom are:

� Magic classes. The classes VM Address, VM Offset, VM -
Extent and VM Word represent raw addresses, memory
offsets, memory ranges and raw memory contents respec-
tively. These classes are required to be represented as the cor-
responding hardware-specific type (i.e. unboxed), but have
methods for operations such as address arithmetic, bit pat-
tern manipulation etc.

� The VM Magic class. This class contains static methods that
directly perform low-level operations, such as memory bar-
riers, unsafe type casts and raw memory access.

� Compiler pragmas. Jikes RVM implements pragmas with
suitably named implements and throws clauses. These
pragmas control compiler inlining, code atomicity and com-
piler optimization.

JMTk is constructed as a set of core classes that are virtual ma-
chine independent, and an interface layer (the vmInterface pack-
age) that adapts the virtual machine to JMTk and vice versa.

1.3 GCC and GCJ
The target compiler for the porting process is gcj, the GNU Com-
piler for Java. This is an ahead-of-time compiler for the Java lan-
guage that uses the gcc back-end for code generation. Gcj was used
without modification, which dictated that we use the first of the op-
tions described above for handling low-level features that Java is
not designed for. This naturally leaves the problem of how to trans-
late from the JMTk Java idiom into the native Java format, and the
solution was the source code transformation described later in this
paper.

Gcj produces object code that can be linked with systems com-
piled with languages in the gcc family, giving a large selection of
target language runtimes. Gcj provides two native interfaces: the
first is the standard JNI C interface; and the second is CNI, which
provides close integration with C++.

1.4 Accurate and conservative collection
Conservative garbage collection [6] is designed for use in languages
that provide no support for garbage collection, such as C and C++.
The Boehm-Demers-Wieser collector (known increasingly as sim-
ply the Boehm collector) has an appealingly simple interface (sim-
ply allocate memory through GC MALLOC), provides performance
that is generally as good or better than explicit memory manage-
ment, and is available for free download. What is interesting is that
the Boehm collector is now being used by compilers for languages
such as Scheme, Java, Dylan and Mercury that are suitable (from a
language design point of view) for accurate collection.

One of the reasons that a conservative collector is being used
is that many of these languages compile using gcc, which has no
support for the stack scanning required by accurate garbage collec-
tors. Henderson [10] has recently developed a source code transfor-
mation technique that enables accurate garbage collection in gcc-
compiled code, but the only other (gcc-based) alternative has been
to implement a virtual machine, and use its stack, registers etc.

Despite the widespread use of the Boehm collectors for these
languages, little is known in practice about its performance relative
to accurate garbage collection techniques. Henderson [10] reports
that an accurate semi-space collector with his ‘shadow stack’ trans-
formation has similar performance (for Mercury programs) to the
Boehm collector. While the JMTk port is not yet running at its ex-
pected performance peak, some further comparisons can be made
here.

1.5 Testbed environment
As an interim step in the process of incorporating JMTk into a new
language environment, a C testbed system was developed that al-
lows the portable code to be tested and evaluated independent of
any target runtime system. The testbed environment will be of long
term interest in JMTk development, as it will significantly simplify
the testing and debugging process for JMTk collectors. The testbed
provides a simplified version of a language runtime environment
(designed from experience with the Haskell runtimes), and imple-
ments several ‘point’ tests of JMTk functionality, and some more
complex tests that also serve as benchmarks. For benchmarking the
testbed provides a ‘test harness’ that iterates over a test and reports
timing results. Five of the JMTk collectors are currently running
in the testbed, and the performance results in this paper were pro-
duced in this environment.

2. THE PORTING PROCESS
Porting JMTk required 3 steps: refactoring of the JMTk code base
to isolate virtual machine dependent code in the interface layer;
transformation of the source code to a form that gcj could compile;
and building a new interface layer for the target machine, in the first
case the testbed environment.

The Jikes RVM approach is possible because the project ‘owns’
the Java Virtual Machine. In this project we determined to use the
standard gcj compiler, and so the JMTk source has been modified in
a systematic way to transform it into something that a vanilla Java
compiler would accept. Note this is not a one-time transformation
producing a separate code base to the Jikes RVM version of JMTk,
but one that is simply applied as a stage in the compilation process.

2.1 Factoring
JMTk was designed from the beginning to be portable, although
unavoidably the initial implementation was found to be consider-
ably Jikes RVM specific when porting work began.

The first, and most significant step in factoring JMTk was to
identify JMTk’s requirements of the underlying virtual machine
from the services it provides to the virtual machine, ie the ‘in-
coming’ and ‘outgoing’ interfaces. With this distinction made, the
vmInterface package can be seen as consisting of 4 separate
interfaces: 1) the services provided to the underlying virtual ma-
chine, implemented in terms of 2) the public classes and methods
of JMTk proper, and 3) JMTk’s requirements from the virtual ma-
chine, implemented in terms of 4) the services offered by the virtual
machine.

Despite being designed to be portable, the core JMTk code had
several Jikes RVM dependencies when porting began. Three strate-
gies were used to remove these dependencies: vectoring static method
calls through the main ‘outgoing’ interface class, VM Interface;
moving classes into the vmInterface package; and re-implementing
functionality provided by Jikes RVM in an internal class.

2.2 Source code transformation
In order to translate between the idiomatic Java in which JMTk is
implemented, and the more traditional native approach to low level
features, a source code transformation tool was built. The required
transformation is:

� Objects to ints. The various machine word types, VM Address,
VM Word etc. are transformed to int or long depending on
the address width of the target architecture.

� Instance methods to static methods. An int in Java can-
not have a method, and so the instance methods of the types

transformed above must be transformed to some other con-
struct that will perform the required operation. As an ini-
tial step, they were transformed to static methods of a class
corresponding to the original type. For example, the code
sequence

VM_Address x = method_x();
method_y(x.add(4));

becomes

int x = method_x();
method_y(VM_Address.add(x,4));

� Pragma exceptions are deleted. The Jikes RVM idiom uses
phantom exceptions of the form

some_method() throws VM_Pragma<xyz> {

These exceptions are treated as directions to the Jikes RVM
compiler as to how to generate code for the method. The
transformed code drops these exceptions (although it may do
something with at least some of them in the future).

� Renaming methods. Method names in Java classes can be
overloaded, provided the overloaded methods take different
parameter types. JMTk contains at least one class that has
more than one method with a magic machine-word type. Af-
ter the transformation of types described above, all of these
methods take int parameters, and violate Java’s overload-
ing restrictions. The solution is to change the name of the
method to reflect it’s pre-transformation type.

Because transformations are applied based on the type of a method
call and are required to swap instance variables for parameters etc,
the transform utility needs to analyse the source program beyond
the simple syntactic level. A simple filter based on awk or sed
would be inadequate for the task. The transform tool was built us-
ing the Antlr parser generator [14, 15].

2.3 The testbed
The testbed is written in C, with an interface to JMTk in C++. The
two features that the testbed must provide to JMTk in particular
are an object model (in particular how to scan for pointers in heap
objects), and a root set. Objects are laid out as a header of at least
4 bytes, followed by zero or more pointer words, then zero or more
non-pointer words. The root set is a simple array, that is generally
treated as a stack by testbed code.

Programming in the testbed environment is somewhat ideosyn-
cratic because the language provides no support for garbage collec-
tion. It is therefore the programmer’s responsibility to ensure that
all heap pointers are held stably in roots across possible GC points.

3. TUNING AND OPTIMIZATION
Initial performance results observed during functional testing were
poor, and it was clear soon after the port was running in the testbed
environment that work was needed to improve it. In order to estab-
lish a baseline for performance tuning, two variants of the testbed
were implemented, firstly using a pure ‘bump pointer’ allocator,
and secondly using the system-supplied ‘malloc’ function1. Sec-
tion 4 evaluates performance of the tuned collectors against each
other and against other systems and describes the benchmarks and
benchmarking methodology, while this section describes the steps
taken to tune the collectors.

The following changes improved the performance of the testbed:
1This was on Linux with glibc 2.2, so this is a recent version of the
Lea allocator.

0 10 20 30 40 50
Heap size (MB)

0

1

2

3

4

5

E
la

ps
ed

 ti
m

e
(s

)

Baseline
Inlining in Deque classes
Inlining in BumpPointer
Bump-pointer in C
Compiler inlining
Compiler - no bounds check
malloc
bump pointer

Tuning: semi-space collector

Figure 1: Tuning results

1. Replacement of VM xxx calls in Deque, LocalDeque and
VMResource classes.

The first two classes are the supertypes of a family of double-
ended queues used extensively during garbage collection. The
body of the methods consists mainly of arithmetic on various
magic types, and their poor performance appeared to be due
to the method invocations involved. The other class is funda-
mental to managing regions of virtual memory. Replacement
of the method invocations with the appropriate arithmetic op-
erations was performed, effectively inlining the method calls
at a source code level.

2. Inlining of VM xxx methods in the BumpPointer class. This
optimization pass was targeted at the allocation path, per-
forming inlining as above.

3. Duplicating the Java code that represents the ‘fast path’ of the
bump pointer allocator into the C++ interface code, replacing
the call JMTK::allocate(bytes) with the function2

char *buf, *bufEnd;
inline char *bp_alloc(int bytes) {

if(buf + bytes > bufEnd) {
buf = JMTK::allocate(CHUNK);
bufEnd = buf + CHUNK;

}
buf += bytes;
return buf - bytes;

}

The principal benefit of this optimization is that the language
boundary between C++ and Java needs to be crossed less
frequently.

4. Using the cross-class inlining provided by gcj 3.3 and above,
by compiling the testbed application and JMTk on a single
command line with the -O3 flag.

5. Using the compiler option to eliminate array bounds checks.

The net result of these optimizations was a 51% speedup in the
smallest heap size, and a 38% speedup in the largest. These results
are shown in Figure 1. Note that in the largest heaps, performance
approaches that of a pure bump-pointer allocator.

2The actual function is more complex than this, but this gives the
essential idea.

One note of interest is the small amount of code optimization
required to achieve this speedup. This justifies the ‘optimize later’
approach adopted3.

4. RESULTS
Currently, 4 of JMTk’s 7 collectors are running in the C testbed
environment. Performance results were obtained using synthetic
benchmarks in the testbed environment.

The restrictive programming model of the testbed environment
dictates that any benchmark be a simple artificial benchmark. Two
benchmarks have been used: the first (known as FTree) manipu-
lates a persistent binary tree in the way that a functional language
would, by allocating new nodes rather than mutating existing ones.
Three variants of FTree were measured, using varying amounts of
non-pointer ‘payload’—these are called FTree(n), where n is the
number of bytes of additional data per node. The second bench-
mark is a list-based quicksort (known as QSort), which allocates
new objects when partitioning and appending lists.

In addition to measuring the JMTk collectors, the Boehm col-
lector in the testbed environment was measured, providing a di-
rect comparison between accurate and conservative collectors in
the same environment. Graphs of the Boehm collector are included
with those of the JMTk collectors.

Finally, the testbed was compared with other Java virtual ma-
chines.

4.1 Methodology
Results of the performance tests are graphed in terms of elapsed
time (best time of 5 iterations) at a range of different heap sizes. For
the cross-platform tests, the minimum heap size that each bench-
mark will run in varies from collector to collector, the leftmost
point of each curve represents performance at the minimum heap
size for that collector. The x-axis of the graph is given in terms
of MB in excess of the minimum for each collector. For example,
if the minimum heap for the semispace collector is 3MB, for gcj
is 6MB and for Jikes RVM is 15MB, the point ’8’ on the x-axis
represents an absolute heap size of 11MB, 14MB and 23MB re-
spectively4. The minimum heap size for all benchmarks run in the
testbed is kept constant across collectors, and actually represents
the minimum heap in which the semi-space collector would run.
The x-range of the FTree(0) and QSort benchmarks were chosen so
that no garbage collection was performed at the rightmost edge of
the graph. The remaining FTree benchmarks were too large to do
this in the main memory of the test platform, so they were graphed
on the same scale as the base FTree benchmark.

Times given are wallclock times for the kernel of the benchmark.
The benchmark is run 5 times with a garbage collection requested
between runs, and the best time of the 5 is used. Measurement was
done on a 433MHz Intel Celeron system, with 256MB memory,
running RedHat Linux 8.0.

4.2 Testbed measurements

3We took Knuth’s advice that “premature optimization is the root
of all evil”.
4Blackburn et. al. [3] use multiples of the minimum heap size. I
found that when comparing systems with different fixed overheads
this gave collectors with high heap requirements an unrealistic ad-
vantage. For example comparing the Sun Java VM against Jikes
RVM with 10 different heap sizes, the rightmost point on the graph
would represent 10MB and 150MB respectively.

The performance of the testbed collectors was measured with 4
benchmarks: FTree(n) where n� 0�40 and 80 5, and QSort. Graphs
of the benchmarks are given in Figures 2 through 5.

0 10 20 30 40 50
Heap size (MB > min heap)

0

1

2

3

4

E
la

ps
ed

 ti
m

e
(s

)

Boehm
copyMS
genMS
mark-sweep
semi-space

JMTk testbed performance
Functional tree, 0 byte payload

Figure 2: JMTk testbed, FTree(0) benchmark

0 10 20 30 40 50
Heap size (MB > min heap)

0

1

2

3

4

5

6

7

8

9

10

E
la

ps
ed

 ti
m

e
(s

)
Boehm
copyMS
genMS
mark-sweep
semi-space

JMTk testbed performance
Functional tree, 40 byte payload

Figure 3: JMTk testbed, FTree(40) benchmark

Things of interest to note from these graphs:
Mark-sweep is consistently the worst performing collector. The

mark-sweep collector is the only one to use JMTk’s free-list allocator—
the other JMTk collectors use a bump-pointer, part of which is ‘in-
lined’ into the C testbed code. The difference in cost for mark-
sweep appears to be the cost of crossing the language boundary
into the Java code for each allocation. In Figure 2 and Figure 5,
the performance of the mark-sweep collector is significantly worse
than the other collectors, but the difference is less noticeable in the
other graphs, which have larger object sizes. This is consistent with
there being a per-object overhead which diminishes in significance
as per-byte costs increase with the larger object size. The perfor-
mance of the genMS collector, which allocates its mature space
with the same class (especially visible in Figure 4) indicates there is
nothing wrong with the performance of the free-list allocator when
called from Java code.

5The mean object size in Jikes RVM for the Spec Jvm98 bench-
mark suite is 32 bytes, and 98% of objects are 96 bytes or less. The
objects used in these benchmarks are 16, 56 and 96 bytes respec-
tively.

0 10 20 30 40 50
Heap size (MB > min heap)

0

5

10

15
E

la
ps

ed
 ti

m
e

(s
)

Boehm
copyMS
genMS
mark-sweep
semi-space

JMTk testbed performance
Functional tree, 80 byte payload

Figure 4: JMTk testbed, FTree(80) benchmark

0 10 20 30 40 50 60 70 80 90 100
Heap size (MB > min heap)

0

1

2

3

4

5

6

7

8

E
la

ps
ed

 ti
m

e
(s

)

Boehm
copyMS
genMS
mark-sweep
semi-space

JMTk testbed performance
Quicksort

Figure 5: JMTk testbed, QSort benchmark.

The Boehm collector also uses a segregated free-list allocator,
but optimized over the 16 years since the collector was first de-
veloped. It should be possible for the JMTk free-list allocator to
achieve a similar level of performance.

In small heaps, and where the object size is large, the Boehm col-
lector outperforms the JMTk collectors. With larger object sizes,
the overhead of copying collectors is proportionally higher, and the
mark-sweep algorithm used by the Boehm collector obtains more
of an advantage. Also, the bump-pointer ‘cache’ of the JMTk col-
lectors is less effective when objects are larger, and the slow allo-
cation codepath is called more frequently. The size of the buffer
used to cache the bump pointer is currently limited by the JMTk al-
location interface which automatically allocates large objects in the
large object space. By exposing a little more of the JMTk internals,
performance of the bump pointer could be improved.

Performance of these collectors does not match the relative per-
formance of the JMTk collectors in Jikes RVM as shown in [3].
One factor in this may be the choice of benchmark, but the results
of the next section (where two collectors running in Jikes RVM are
compared) don’t seem to support that hypothesis.

The most likely explanation is that in the tuning effort, the semi-
space collector received more attention than any other collector,
and there is still significant tuning to be done.

Another, less welcome possibility is that semi-space performs
well because it is a very simple collector. The generational col-

0 10 20 30 40 50
Heap size (MB > min heap)

0

0.5

1

1.5

2

2.5

3

E
la

ps
ed

 ti
m

e
(s

)

JMTk/gcj - semiSpace
Jikes RVM - semiSpace
Jikes RVM - genMS
Sun j2sdk 1.4.1
Gcj 3.3

Cross-platform comparison
Functional tree benchmark

Figure 6: Cross platform comparison: FTree(0) benchmark.

0 10 20 30 40 50 60 70 80 90 100
Heap size (MB > min heap)

0

1

2

3

4

5

6

7

8

9

10

E
la

ps
ed

 ti
m

e
(s

)

JMTk/gcj - semiSpace
Jikes RVM - semiSpace
Jikes RVM - genMS
Sun j2sdk 1.4.1
Gcj 3.3

Cross-platform comparison
Quicksort benchmark

Figure 7: Cross platform comparison: QSort benchmark.

lectors perform less well than in Jikes RVM because the gcj com-
piler is unable to perform the same amount of optimization as Jikes
RVM, and that complex, well-structured code (from an OO-design
point of view) will not perform well under gcj. If this is true, then
significant effort will need to be expended to make JMTk compet-
itive with hand-tuned C implementations, and may require consid-
erable work.

4.3 Cross-platform
Figures 6 and 7 show the relative performance of the testbed with a
semi-space collector and 4 other Java systems: Jikes RVM running
the JMTk semi-space collector; Jikes RVM running the genMS col-
lector; gcj 3.3 running the Boehm collector; and the hotspot Java
virtual machine from the Sun Java SDK 1.4.1, which uses a gener-
ational copying collector.

The basis of comparison is problematic. While there are bases
for comparison for all systems, there are also substantial differ-
ences. The comparison of the testbed with Jikes RVM seems on
the face of it to be the most valid, as this is the exact same collec-
tor. On the other hand, while the heap in the testbed contains only
the data structure of the benchmark, the Jikes RVM heap also con-
tains considerable amounts of the code and support data structures
for Jikes RVM and the benchmark itself. This impacts significantly
on the cost of doing collection in the semi-space collector. This
overhead could be ameliorated once Gilani’s work [9] is incorpo-
rated into JMTk, and the Jikes RVM code can be separated into a

Minimum heap (MB)
Configuration FTree QSort
JMTk testbed 3 7
Jikes RVM semiSpace 15 15
Jikes RVM genMS 12 16
gcj 6 9
Sun Hotspot 1 3

Table 1: Minimum heap sizes for cross-platform comparisons

different heap region to the application.
The performance of the Jikes RVM semi-space configuration at

the maximum heap sizes, however, shows how efficient JMTk can
be in its native environment, providing a ‘best case’ for the port.
This on the other hand is not as straightforward as it sounds: the
mutator code in Jikes RVM has assistance from the compiler: heap
pointers can be held and passed as parameters in registers (for ex-
ample) rather than stored stably in memory across all points where
GC could possibly be initiated.

The Jikes RVM genMS collector shows how well JMTk collec-
tors can perform in their native environment: this collector does
not suffer as much as the semi-space collector from the overheads
of Jikes RVM’s Java-in-Java implementation.

The gcj comparison is quite natural, as it compares two imple-
mentations of the same algorithm with essentially the same com-
piler technology. The result of this comparison shows that the
testbed platform is a comparable programming environment to Java
with gcj.

The Sun Hotspot JVM is probably the least justifiable compari-
son, but it does provide a sanity check with commercial Java virtual
machine technology. Although it is consistently marginally slower
than Jikes RVM’s genMS collector, it is the second fastest for most
heap sizes, and runs in the smallest heap size of all collectors. The
collector used is a generational copying collector.

Despite the difficulties discussed above, the graphs of perfor-
mance across machines give an interesting picture of where the
portable JMTk implementation fits with respect to other systems.
A valid summary might be that it is respectable, but has some room
for improvement, particularly in small heaps.

5. FUTURE WORK
The source code transform technique introduces several performance
improvement possibilities, including: source-level inlining, both in
the transformed methods and of straight JMTk code; specializa-
tion of methods (to promote inlining and eliminate dynamic dis-
patch); and ‘out-lining’ of ‘hot’ code so that optimizations such as
the bump-pointer might be done automatically.

A broader set of benchmarks would be useful, but defining a
set of synthetic benchmarks that can predict real-world application
performance is notoriously difficult. One possiblity is to develop a
trace-driven benchmark, that would also be useful in reproducing
errors.

The future of JMTk as a portable memory manager has just be-
gun: there are many language runtimes that could benefit from
JMTk once we can demonstrate a convincing performance advan-
tage over conservative techniques. Work is underway to integrate
JMTk into the ghc Haskell compiler, and the Rotor C# environ-
ment.

6. CONCLUSION
JMTk can now claim to be a portable memory management toolkit,
although it cannot yet claim to achieve high performance in all en-
vironments.

Source code transformation has proven to be an effective tech-
nique for porting of systems-level Java code. The transform tool is
currently in use, translating JMTk’s Java idiom for the port to the
OVM Java Virtual Machine, which uses its own Java idiom.

The testbed environment provides a direct comparison between
accurate and conservative garbage collection techniques. The JMTk
port is not yet mature enough for this to be conclusive, and the
question of the validity of synthetic benchmarks will continue to
be an issue, but labguage runtime implementors should soon be in
a position to know empirically what the costs are of conservative
collection.

7. REFERENCES
[1] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F.

Hummel, D. Lieber, T. Ngo, M. F. Mergen, J. C. Shepherd,
and S. Smith. Implementing Jalapeño in Java. In Proceedings
of the 1999 ACM Conference on Object-Oriented
Programming Systems, Languages and Applications
(OOPSLA ’99), pages 314–324, 1999.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, A. Cocchi, S. F.
Hummel, D. Lieber, T. Ngo, M. F. Mergen, J. C. Shepherd,
and S. Smith. The Jalapeño virtual machine. IBM System
Journal, 39(1):211–238, Feb. 2000.

[3] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection. In
Submitted for Publication to SIGMETRICS, 2004.
http://www.cs.utexas.edu/users/mckinley/papers/jmtk-
sigmetrics-submit-2003.ps.gz.

[4] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
water? High performance garbage collection in Java with
JMTk. In Submitted for Publication to ICSE, 2004.
http://www.cs.utexas.edu/users/mckinley/papers/jmtk-icse-
submit-2003.ps.gz.

[5] S. M. Blackburn, R. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock.
In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI),
Berlin, Germany, June 2002. ACM.

[6] H.-J. Boehm and M. Weiser. Garbage collection in an
uncooperative environment. Software Practice and
Experience, 18(9):807–820, 1988.

[7] C. Flack, T. Hosking, and J. Vitek. Idioms in ovm. Technical
Report CSD-TR-03-017, Department of Computer Sciences,
Purdue University, 2003.

[8] R. J. Garner. Honours thesis. A.N.U.,
http://eprints.anu.edu.au/, 2003.

[9] F. Gilani. Title unknown. Master’s thesis, Australian
National University, 2003.

[10] F. Henderson. Accurate garbage collection in an
uncooperative environment. In Proceedings of the third
international symposium on Memory management, pages
150–156. ACM Press, 2002.

[11] R. Hudson, E. Moss, A. Diwan, and C. F. Weight. A
language-independent garbage collector toolkit. Technical
Report TR 91-47, University of Massachusetts at Amherst,
1991.

[12] R. Jones and R. Lins. Garbage Collection. John Wiley and
Sons, 1996.

[13] J. McCarthy. Recursive functions of symbolic expressions
and their computation by machine. Communications of the
ACM, 3(4):173–197, Apr. 1960.

[14] T. Parr. ANTLR: Another Tool for Language Recognition,
2002. http://www.antlr.org/.

[15] T. J. Parr and R. W. Quong. Antlr: A Predicated-LL(k)
Parser. Software—Practice And Experience, 25(7):789–810,
July 1995.

[16] P. R. Wilson. Uniprocessor garbage collection techniques. In
H. Baker, editor, Proceedings of the International Workshop
on Memory Management, volume 637 of Lecture Notes in
Computer Science, St Malo, France, Sept. 1992.
Springer-Verlag.

[17] P. R. Wilson. Uniprocessor garbage collection techniques.
Expanded version of [16], 1994.

